【Rubyリファレンスマニュアル chm版リミックス】 > ライブラリ一覧 > 組み込みライブラリ > Arrayクラス
クラスの継承リスト: Array
< Enumerable
< Object
< Kernel
< BasicObject
dynamic include:
JSON::Generator::GeneratorMethods::Array (by json)
配列クラスです。 配列は任意の Ruby オブジェクトを要素として持つことができます。
一般的には配列は配列式を使って
[1, 2, 3]
のように生成します。
self[*item] -> Array
引数 item を要素として持つ配列を生成して返します。
Array のサブクラスを作成したしたときに、そのサブクラスのインスタンスを作成 しやすくするために用意されている。
例:
Array[1, 2, 3] #=> [1, 2, 3] class SubArray < Array # ... end p SubArray[1, 2, 3] # => [1, 2, 3]
new(size = 0, val = nil) -> Array
長さ size の配列を生成し、各要素を val で初期化して返します。
要素毎に val が複製されるわけではないことに注意してください。 全要素が同じオブジェクト val を参照します[[trap:Array]]。 後述の例では、配列の各要素は全て同一の文字列を指します。
例:
ary = Array.new(3, "foo") p ary #=> ["foo", "foo", "foo"] ary[0].capitalize! p ary #=> ["Foo", "Foo", "Foo"] (各要素は同一のオブジェクトである)
new(ary) -> Array
指定された配列 ary を複製して返します。 Array#dup 同様 要素を複製しない浅い複製です。
例:
p Array.new([1,2,3]) # => [1,2,3] a = ["a", "b", "c"] b = Array.new(a) a.each{|s| s.capitalize! } p a #=> ["A", "B", "C"] p b #=> ["A", "B", "C"] (b は a と要素を共有する)
new(size) {|index| ... } -> Array
長さ size の配列を生成し、各要素のインデックスを引数としてブロックを実行し、 各要素の値をブロックの評価結果に設定します。
ブロックは要素毎に実行されるので、全要素をあるオブジェクトの複製にすることができます。
例:
ary = Array.new(3){|index| "hoge#{index}"} p ary #=> ["hoge0", "hoge1", "hoge2"]
例:
ary = Array.new(3){ "foo" } p ary #=> ["foo", "foo", "foo"] ary[0].capitalize! p ary #=> ["Foo", "foo", "foo"] (各要素は違うオブジェクトである)
try_convert(obj) -> Array | nil
to_ary メソッドを用いて obj を配列に変換しようとします。
何らかの理由で変換できないときには nil を返します。 このメソッドは引数が配列であるかどうかを調べるために使えます。
例:
Array.try_convert([1]) # => [1] Array.try_convert("1") # => nil if tmp = Array.try_convert(arg) # the argument is an array elsif tmp = String.try_convert(arg) # the argument is a string end
self & other -> Array
集合の積演算です。両方の配列に含まれる要素からなる新しい配列を返 します。重複する要素は取り除かれます。
要素の重複判定は、Object#eql? により行われます。
[1, 1, 2, 3] & [1, 3, 4] #=> [1, 3]
[SEE_ALSO] Array#|
self * times -> Array
配列の内容を times 回 繰り返した新しい配列を作成して返します。 値はコピーされないことに注意してください[[trap:Array]]。
p [1, 2, 3] * 3 #=> [1, 2, 3, 1, 2, 3, 1, 2, 3]
self * sep -> String
指定された sep を間にはさんで連結した文字列を生成して返します。Array#join(sep) と同じ動作をします。
p [1,2,3] * "," # => "1,2,3"
[SEE_ALSO] Array#join
self + other -> Array
自身と other の内容を繋げた配列を生成して返します。
a = [1, 2] b = [8, 9] p a + b #=> [1, 2, 8, 9] p a #=> [1, 2] (変化なし) p b #=> [8, 9] (こちらも変化なし)
self - other -> Array
自身から other の要素を取り除いた配列を生成して返します。
要素の同一性は Object#eql? により評価されます。 self 中で重複していて、other中に存在していなかった要素は、その重複が保持されます。
[1, 2, 1, 3, 1, 4, 1, 5] - [2, 3, 4, 5] # => [1, 1, 1, 1] [1, 2, 1, 3, 1, 4, 1, 5] - [1, 2, 3, 4, 5] # => []
self << obj -> self
指定された obj を自身の末尾に破壊的に追加します。
ary = [1] ary << 2 p ary # [1, 2]
またこのメソッドは self を返すので、以下のように連続して 書くことができます。
ary = [1] ary << 2 << 3 << 4 p ary #=> [1, 2, 3, 4]
[SEE_ALSO] Array#push
self <=> other -> -1 | 0 | 1 | nil
自身と other の各要素をそれぞれ順に <=> で比較していき、結果が 0 でなかった場合に その値を返します。各要素が等しく、配列の長さも等しい場合には 0 を返します。 各要素が等しいまま一方だけ配列の末尾に達した時、自身の方が短ければ -1 をそうでなければ 1 を返します。 other に配列以外のオブジェクトを指定した場合は nil を返します。
[ 1, 2, 3 ] <=> [ 1, 3, 2 ] #=> -1 [ 1, 2, 3 ] <=> [ 1, 2 ] #=> 1
self == other -> bool
自身と other の各要素をそれぞれ順に == で比較し て、全要素が等しければ true を返します。そうでない場合には false を返します。
[SEE_ALSO] Object#==
self[nth] -> object | nil
at(nth) -> object | nil
nth 番目の要素を返します。nth 番目の要素が存在しない時には nil を返します。
例:
a = [ "a", "b", "c", "d", "e" ] a[0] #=> "a" a[1] #=> "b" a[-1] #=> "e" a[-2] #=> "d" a[10] #=> nil
self[range] -> Array | nil
Range オブジェクト range の範囲にある要素からなる部分配列を返します。 range の first の値が配列の範囲に収まらない場合 nil を返します。 range の first が end より後にある場合には空の配列を返します。
例:
a = [ "a", "b", "c", "d", "e" ] a[0..1] #=> ["a", "b"] a[0...1] #=> ["a"] a[0..-1] #=> ["a", "b", "c", "d", "e"] a[-2..-1] #=> ["d", "e"] a[-2..4] #=> ["d", "e"] (start は末尾から -2 番目、end は先頭から (4+1) 番目となる。) a[0..10] #=> ["a", "b", "c", "d", "e"] a[10..11] #=> nil a[2..1] #=> [] a[-1..-2] #=> [] # 特殊なケース。first が自身の長さと同じ場合には以下のようになります。 a[5] #=> nil a[5, 1] #=> [] a[5..10] #=> []
self[start, length] -> Array | nil
start 番目から length 個の要素を含む部分配列を返します。 length が負の時、start が自身の範囲を越えた時には nil を返します。
例:
a = [ "a", "b", "c", "d", "e" ] a[0, 1] #=> ["a"] a[-1, 1] #=> ["e"] a[0, 10] #=> ["a", "b", "c", "d", "e"] a[0, 0] #=> [] a[0, -1] #=> nil a[10, 1] #=> nil # 特殊なケース。start が自身の長さと同じ場合には以下のようになります。 a[5] #=> nil a[5, 1] #=> [] a[5..10] #=> []
self[nth] = val
nth 番目の要素を val に設定します。nth が配列の範囲を越える時には配列の長さを自動的に拡張し、 拡張した領域を nil で初期化します。
例:
a = [0, 1, 2, 3, 4, 5] a[0] = "a" p a #=> ["a", 1, 2, 3, 4, 5] a[10] = "x" p a #=> ["a", 1, 2, 3, 4, 5, nil, nil, nil, nil, "x"] a = [0, 1, 2, 3, 4, 5] a[-100] = 1 #=> IndexError
self[range] = val
Range オブジェクト range の範囲にある要素を配列 val の内容に置換します。 range の first が自身の末尾を越える時には配列の長さを自動的に拡張し、拡張した領域を nil で初期化します。
ary = [0, 1, 2, 3, 4, 5] ary[0..2] = ["a", "b"] p ary # => ["a", "b", 3, 4, 5] ary = [0, 1, 2] ary[5..6] = "x" p ary # => [0, 1, 2, nil, nil, "x"] ary = [0, 1, 2, 3, 4, 5] ary[1..3] = "x" p ary # => [0, "x", 4, 5]
ary = [0, 1, 2, 3, 4, 5] ary[2..0] = ["a", "b", "c"] p ary # => [0, 1, "a", "b", "c", 2, 3, 4, 5]
ary = [0, 1, 2, 3, 4, 5] ary[2..4] = nil p ary # => [0, 1, 5]
例:
a = [0, 1, 2, 3, 4, 5] a[-10..10] = 1 #=> RangeError
self[start, length] = val
インデックス start から length 個の要素を配列 val の内容で置き換えます。 start が自身の末尾を越える時には配列の長さを自動的に拡張し、拡張した領域を nil で初期化します。
ary = [0, 1, 2, 3] ary[1, 2] = ["a", "b", "c", "d"] p ary #=> [0, "a", "b", "c", "d", 3] ary = [0, 1, 2] ary[5, 1] = "Z" p ary #=> [0, 1, 2, nil, nil, "Z"] ary = [0, 1, 2, 3] ary[0, 10] = ["a"] p ary #=> ["a"]
ary = [0, 1, 2, 3] ary[1, 0] = ["inserted"] p ary # => [0, "inserted", 1, 2, 3]
a = [0, 1, 2, 3, 4, 5] a[2, 3] = nil p a # => [0, 1, 5]
assoc(key) -> Array | nil
配列の配列を検索して、その 0 番目の要素が key に == で等しい 最初の要素を返します。該当する要素がなければ nil を返します。
ary = [[1,15], [2,25], [3,35]] p ary.assoc(2) # => [2, 25] p ary.assoc(100) # => nil p ary.assoc(15) # => nil
[SEE_ALSO] Array#rassoc
bsearch { |x| ... } -> object | nil
ブロックの評価結果で範囲内の各要素の判定を行い、条件を満たす値を二分探 索(計算量は O(log n))で検索します。要素が見つからない場合は nil を返し ます。self はあらかじめソートしておく必要があります。
本メソッドはブロックを評価した結果により以下のいずれかのモードで動作し ます。
find-minimum モード(特に理由がない限りはこのモードを使う方がいいでしょ う)では、条件判定の結果を以下のようにする必要があります。
ブロックの評価結果が true になる最初の要素を返すか、nil を返します。
ary = [0, 4, 7, 10, 12] ary.bsearch {|x| x >= 4 } # => 4 ary.bsearch {|x| x >= 6 } # => 7 ary.bsearch {|x| x >= -1 } # => 0 ary.bsearch {|x| x >= 100 } # => nil
find-any モードは bsearch(3) のように動作します。ブロックは真偽値 ではなく、以下のような数値を返す必要があります。求める要素が配列の i 番目 から j-1 番目までに入っているとします。またブロックパラメータの値の インデックスを k とします。
ブロックの評価結果が 0 になるいずれかの要素を返すか、nil を返します。
ary = [0, 4, 7, 10, 12] # 4 <= v < 8 になる要素を検索 ary.bsearch {|x| 1 - x / 4 } # => 4 or 7 # 8 <= v < 10 になる要素を検索 ary.bsearch {|x| 4 - x / 2 } # => nil
上記の 2 つのモードを混在して使用しないでください(ブロックの評価結果は 常に true/false、数値のいずれかを一貫して返すようにしてください)。 また、二分探索の各イテレーションで値がどのような順序で選ばれるかは 未規定です。
[SEE_ALSO] Range#bsearch, http://jp.rubyist.net/magazine/?0041-200Special-note#l15
clear -> self
配列の要素をすべて削除して空にします。
ary = [1, 2] ary.clear p ary #=> []
clone -> Array
dup -> Array
レシーバと同じ内容を持つ新しい配列を返します。
clone は frozen tainted singleton-class の情報も含めてコピーしますが、 dup は内容だけをコピーします。 またどちらのメソッドも要素それ自体のコピーはしません。 つまり「浅い(shallow)」コピーを行います。
ary = ['string'] p ary #=> ["string"] copy = ary.dup p copy #=> ["string"] ary[0][0...3] = '' p ary #=> ["ing"] p copy #=> ["ing"]
collect! {|item| ..} -> self
map! {|item| ..} -> self
collect! -> Enumerator
map! -> Enumerator
各要素を順番にブロックに渡して評価し、その結果で要素を 置き換えます。
ブロックが与えられなかった場合は、自身と map! から生成した Enumerator オブジェクトを返します。
例:
ary = [1, 2, 3] ary.map! {|i| i * 3 } p ary #=> [3, 6, 9] ary = [1, 2, 3] e = ary.map! e.each{ 1 } p ary #=> [1, 1, 1]
[SEE_ALSO] Enumerable#collect, Enumerator
combination(n) {|c| block } -> Array
combination(n) -> Enumerator
サイズ n の組み合わせをすべて生成し、それを引数としてブロックを実行します。
得られる組み合わせの順序は保証されません。ブロックなしで呼び出されると、組み合わせ を生成する Enumerator オブジェクトを返します。
例:
a = [1, 2, 3, 4] a.combination(1).to_a #=> [[1],[2],[3],[4]] a.combination(2).to_a #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]] a.combination(3).to_a #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]] a.combination(4).to_a #=> [[1,2,3,4]] a.combination(0).to_a #=> [[]]: one combination of length 0 a.combination(5).to_a #=> [] : no combinations of length 5
[SEE_ALSO] Array#permutation, Array#repeated_combination
compact -> Array
compact! -> self | nil
compact は自身から nil を取り除いた配列を生成して返します。 compact! は自身から破壊的に nil を取り除き、変更が 行われた場合は self を、そうでなければ nil を返します。
ary = [1, nil, 2, nil, 3, nil] p ary.compact #=> [1, 2, 3] p ary #=> [1, nil, 2, nil, 3, nil] ary.compact! p ary #=> [1, 2, 3] p ary.compact! #=> nil
concat(other) -> self
配列 other を自身の末尾に破壊的に連結します。
array = [1, 2] a = [3, 4] array.concat a p array # => [1, 2, 3, 4] p a # => [3, 4] # こちらは変わらない
cycle(n=nil) {|obj| block } -> nil
cycle(n=nil) -> Enumerator
配列の全要素を n 回(nilの場合は無限に)繰り返しブロックを呼びだします。
ブロックを省略した場合は、以上のような繰り返しを行う Enumerator を返します。
例:
a = ["a", "b", "c"] a.cycle {|x| puts x } # print, a, b, c, a, b, c,.. forever.
delete(val) -> object | nil
delete(val) { ... } -> object
指定された val と == で等しい要素を自身からすべて取り除きます。 等しい要素が見つかった場合は最後に見つかった要素を、 そうでない場合には nil を返します。
ブロックが与えられた場合、val と等しい要素が見つからなかったときにブロッ クを評価してその結果を返します。
array = [1, 2, 3, 2, 1] p array.delete(2) #=> 2 p array #=> [1, 3, 1] # ブロックなしの引数に nil を渡すとその戻り値から削除が # 行われたかどうかの判定をすることはできない ary = [nil,nil,nil] p ary.delete(nil) #=> nil p ary #=> [] p ary.delete(nil) #=> nil
delete_at(pos) -> object | nil
指定された位置 pos にある要素を取り除きそれを返します。 pos が範囲外であったら nil を返します。
Array#at と同様に負のインデックスで末尾から位置を指定するこ とができます。
array = [0, 1, 2, 3, 4] array.delete_at 2 p array #=> [0, 1, 3, 4]
delete_if {|x| ... } -> self
reject! {|x| ... } -> self | nil
delete_if -> Enumerator
reject! -> Enumerator
要素を順番にブロックに渡して評価し、その結果が真になった要素をすべて削除します。 delete_if は常に self を返しますが、reject! は要素が 1 つ以上削除されれば self を、 1 つも削除されなければ nil を返します。
ブロックが与えられなかった場合は、自身と reject! から生成した Enumerator オブジェクトを返します。 返された Enumerator オブジェクトの each メソッドには、 もとの配列に対して副作用があることに注意してください。
例:
a = [0, 1, 2, 3, 4, 5] a.delete_if{|x| x % 2 == 0} p a #=> [1, 3, 5] a = [0, 1, 2, 3, 4, 5] e = a.reject! e.each{|i| i % 2 == 0} p a #=> [1, 3, 5] もとの配列から削除されていることに注意。
each {|item| .... } -> self
each -> Enumerator
各要素に対してブロックを評価します。
ブロックが与えられなかった場合は、自身と each から生成した Enumerator オブジェクトを返します。
[1, 2, 3].each do |i| puts i end #=> 1 2 3
each_index {|index| .... } -> self
each_index -> Enumerator
各要素のインデックスに対してブロックを評価します。
以下と同じです。
(0 ... ary.size).each {|index| .... }
ブロックが与えられなかった場合は、自身と each_index から生成した Enumerator オブジェクトを返します。
empty? -> bool
自身の要素の数が 0 の時に真を返します。そうでない場合に false を返します。
p [].empty? #=> true p [1, 2, 3].empty? #=> false
eql?(other) -> bool
自身と other の各要素をそれぞれ順に Object#eql? で比較して、全要素が等しければ真を返 します。そうでない場合に false を返します。
["a", "b", "c"].eql? ["a", "b", "c"] #=> true ["a", "b", "c"].eql? ["a", "c", "b"] #=> false ["a", "b", 1].eql? ["a", "b", 1.0] #=> false (1.eql?(1.0) が false なので)
[SEE_ALSO] Object#eql?
fetch(nth) -> object
fetch(nth, ifnone) -> object
fetch(nth) {|nth| ... } -> object
nth 番目の要素を返します。
Array#[](nth) とは nth 番目の要素が存在しない場合の振舞いが異 なります。最初の形式では、例外 IndexError が発生します。 二番目の形式では、引数 ifnone を返します。 三番目の形式では、ブロックを評価した結果を返します。
例:
a = [1, 2, 3, 4, 5] begin p a.fetch(10) rescue IndexError => err puts err #=> index 10 out of array end p a.fetch(10, 999) #=> 999 result = a.fetch(10){|nth| print "#{nth} はありません。\n" 999 } p result #=> 999
fill(val) -> self
fill {|index| ... } -> self
すべての要素に val をセットします。
このメソッドが val のコピーでなく val 自身をセットする ことに注意してください([[trap:Array]])。 val の代わりにブロックを指定するとブロックの評価結果を値とします。
a = [0, 1, 2, 3, 4] a.fill(10) p a #=> [10, 10, 10, 10, 10] a = [0, 1, 2, 3, 4] a.fill("a") p a #=> ["a", "a", "a", "a", "a"] a[0].capitalize! p a #=> ["A", "A", "A", "A", "A"]
fill(val, start, length = nil) -> self
fill(val, range) -> self
fill(start, length = nil) {|index| ... } -> self
fill(range) {|index| ... } -> self
配列の指定された範囲すべてに val をセットします。
範囲の始点が自身の末尾を越える時には配列の長さを自動的に拡張し、拡張した領域を nil で初期化します。 範囲の終点が自身の末尾を越える時は長さを自動的に拡張し、拡張した部分を val で初期化します。 このメソッドが val のコピーでなく val 自身をセットすることに注意してください([[trap:Array]])。
a = [0, 1, 2] a.fill("x", 5..10) p a #=> [0, 1, 2, nil, nil, "x", "x", "x", "x", "x", "x"]
val の代わりにブロックを指定するとブロックの評価結果を値とし ます。ブロックは要素毎に実行されるので、セットする値のそれぞれをあ るオブジェクトの複製にすることができます。 ブロックのパラメータには start からのインデックスが渡されます。
ary = [] p ary.fill(1..2) {|i| i} # => [nil, 1, 2] p ary.fill(0,3) {|i| i} # => [0, 1, 2] p ary.fill { "foo" } # => ["foo", "foo", "foo"] p ary.collect {|v| v.object_id } # => [537770124, 537770112, 537770100]
find_index(val) -> Integer | nil
index(val) -> Integer | nil
find_index {|item| ...} -> Integer | nil
index {|item| ...} -> Integer | nil
find_index -> Enumerator
index -> Enumerator
条件に一致する最初の要素の位置を返します。
指定された val と == で等しい最初の要素の位置を返します。 等しい要素がひとつもなかった場合は nil を返します。
p [1, 0, 0, 1, 0].index(1) #=> 0 p [1, 0, 0, 0, 0].index(1) #=> 0 p [0, 0, 0, 0, 0].index(1) #=> nil
ブロックが与えられた場合には、各要素を引数として順にブロックを実行し、 ブロックが真を返した最初の要素の位置を返します。 一つも真にならなかった場合は nil を返します。
p [0, 1, 0, 1, 0].index {|v| v > 0} #=> 1
引数、ブロックのどちらも与えられなかった場合は、 Enumerator のインスタンスを返します。
[SEE_ALSO] Array#rindex
first -> object | nil
配列の先頭の要素を返します。要素がなければ nil を返します。
p [0, 1, 2].first #=> 0 p [].first #=> nil
[SEE_ALSO] Array#last
first(n) -> Array
先頭の n 要素を配列で返します。n は 0 以上でなければなりません。
ary = [0, 1, 2] p ary.first(0) p ary.first(1) p ary.first(2) p ary.first(3) p ary.first(4) # => [] [0] [0, 1] [0, 1, 2] [0, 1, 2]
[SEE_ALSO] Array#last
flatten(lv = nil) -> Array
flatten!(lv = nil) -> self | nil
flatten は自身を再帰的に平滑化した配列を生成して返します。flatten! は 自身を再帰的かつ破壊的に平滑化し、平滑化が行われた場合は self をそうでない 場合は nil を返します。 lv が指定された場合、lv の深さまで再帰的に平滑化します。
# 自身を再帰的に平滑化する例。 a = [1, [2, 3, [4], 5]] p a.flatten #=> [1, 2, 3, 4, 5] p a #=> [1, [2, 3, [4], 5]] # 自身を破壊的に平滑化する例。 a = [[[1, [2, 3]]]] p a.flatten! #=> [1, 2, 3] p a #=> [1, 2, 3] # 平滑化が行われない場合は nil を返す。 p [1, 2, 3].flatten! #=> nil # 平滑化の再帰の深さを指定する例。 a = [ 1, 2, [3, [4, 5] ] ] a.flatten(1) #=> [1, 2, 3, [4, 5]]
hash -> Integer
自身のハッシュ値を整数で返します。ハッシュ値は自身の各要素のハッシュ値から 計算されます。Array#eql? で比較して等しい配列同士は同じハッシュ値を返します。
a = ["a", "b", 1] a.hash #=> 321 b = a.dup b.hash #=> 321 ["a", 1, "b"].hash #=> 491 ["a", 1.0, "b"].hash #=> 466227
include?(val) -> bool
配列が val と == で等しい要素を持つ時に真を返します。
a = [ "a", "b", "c" ] a.include?("b") #=> true a.include?("z") #=> false
insert(nth, *val) -> self
インデックス nth の要素の直前(nth が負の場合は直後)に第 2 引数以降の値を挿入します。 引数 val を一つも指定しなければ何もしません。
ary = [1, 2, 3] ary.insert(2, "a", "b") p ary # => [1, 2, "a", "b", 3] ary.insert(-2, "X") p ary # => [1, 2, "a", "b", "X", 3]
to_s -> String
inspect -> String
自身の情報を人間に読みやすい文字列にして返します。
[1, 2, 3, 4].to_s # => "[1, 2, 3, 4]" [1, 2, 3, 4].inspect # => "[1, 2, 3, 4]"
join(sep = $,) -> String
配列の要素を文字列 sep を間に挟んで連結した文字列を返します。
文字列でない要素に対しては、to_str があれば to_str、なければ to_s した結果を連結します。 要素がまた配列であれば再帰的に (同じ sep を利用して) join した文字列を連結します。 ただし、配列要素が自身を含むような無限にネストした配列に対しては、以下 のような結果になります。
ary = [1,2,3] ary.push ary p ary # => [1, 2, 3, [...]] p ary.join # => ArgumentError
[1, 2, 3].join('-') #=> "1-2-3"
keep_if {|item| ... } -> self
keep_if -> Enumerator
ブロックが false を返した要素を削除します。
a = %w{ a b c d e f } a.keep_if {|v| v =~ /[aeiou]/} # => ["a", "e"] a # => ["a", "e"]
Array#select! と同様に自身を上書きしますが、削除する要素がなかっ た場合には修正を行いません。
a = %w{ a b c d e f } a.keep_if {|v| v =~ /[a-z]/ } # => ["a", "b", "c", "d", "e", "f"] a # => ["a", "b", "c", "d", "e", "f"]
ブロックが与えられなかった場合は、自身と keep_if から生成した Enumerator オブジェクトを返します。
[SEE_ALSO] Array#select!
last -> object | nil
配列の末尾の要素を返します。配列が空のときは nil を返します。
p [0, 1, 2].last #=> 2 p [].last #=> nil
[SEE_ALSO] Array#first
last(n) -> Array
末尾の n 要素を配列で返します。n は 0 以上でなければなりません。
ary = [0, 1, 2] p ary.last(0) p ary.last(1) p ary.last(2) p ary.last(3) p ary.last(4) # => [] [2] [1, 2] [0, 1, 2] [0, 1, 2]
[SEE_ALSO] Array#first
length -> Integer
size -> Integer
配列の長さを返します。配列が空のときは 0 を返します。
p [1, nil, 3, nil].size #=> 4
pack(template) -> String
配列の内容を template で指定された文字列にしたがって、 バイナリとしてパックした文字列を返します。
テンプレートは 型指定文字列とその長さ(省略時は1)を並べたものです。長さと して * が指定された時は「残りのデータ全て」の長さを 表します。型指定文字は以下で述べる pack テンプレート文字列の通りです。
以下にあげるものは、Array#pack、String#unpack のテンプレート文字の一覧です。テンプレート文字は後に「長さ」を表す数字 を続けることができます。「長さ」の代わりに`*'とすることで「残り全て」 を表すこともできます。
長さの意味はテンプレート文字により異なりますが大抵、
"iiii"
のように連続するテンプレート文字は
"i4"
と書き換えることができます。
テンプレート文字列中の空白類は無視されます。 また、`#' から改行あるいはテンプレート文字列の最後まではコメントとみな され無視されます。
各テンプレート文字の説明の中で、 short や long はシステムによらずそれぞれ 2, 4バイトサ イズの数値(32ビットマシンで一般的なshort, longのサイズ)を意味していま す。s, S, l, L に対しては直後に _ または ! を "s_" あるいは "s!" のように 続けることでシステム依存の short, long のサイズにすることもできます。
i, I (int)のサイズは常にシステム依存であり、n, N, v, V のサイズは常にシステム依存ではない(!をつけられない)ことに注意してください。
つまり、IO#ioctl などで C の構造体を渡すときのように、 システム依存のサイズとエンディアンに合わせる必要があるときには s!, S!, i!, I!, l!, L!, q!, Q! を用います。 また、ネットワークプロトコルやファイルフォーマットのように、 システムに依存しないデータを扱うときには n, N, v, V を用います。
まとめると以下のようになります。
n: big endian unsigned 16bit N: big endian unsigned 32bit v: little endian unsigned 16bit V: little endian unsigned 32bit
s!: signed short S!: unsigned short i!: signed int I!: unsigned int l!: signed long L!: unsigned long q!: signed long long Q!: unsigned long long
s: int16_t S: uint16_t l: int32_t L: uint32_t
説明中、Array#pack と String#unpack で違いのあるものは `/' で区切って 「Array#pack の説明 / String#unpack の説明」としています。
ASCII文字列(null文字を詰める/後続するnull文字やスペースを残す)
["abc"].pack("a") # => "a" ["abc"].pack("a*") # => "abc" ["abc"].pack("a4") # => "abc\0" "abc\0".unpack("a4") # => ["abc\0"] "abc ".unpack("a4") # => ["abc "]
ASCII文字列(スペースを詰める/後続するnull文字やスペースを削除)
["abc"].pack("A") # => "a" ["abc"].pack("A*") # => "abc" ["abc"].pack("A4") # => "abc " "abc ".unpack("A4") # => ["abc"] "abc\0".unpack("A4") # => ["abc"]
null終端文字列(長さが`*'の場合も含め、null文字を詰める/後続するnull文字を削除)
["abc"].pack("Z") # => "a" ["abc"].pack("Z*") # => "abc\0" ["abc"].pack("Z4") # => "abc\0" "abc\0".unpack("Z4") # => ["abc"] "abc ".unpack("Z4") # => ["abc "]
ビットストリング(各バイトごとに下位ビットから上位ビット)
"\377\000".unpack("b*") # => ["1111111100000000"] "\001\002".unpack("b*") # => ["1000000001000000"] "\001\002".unpack("b3") # => ["100"] ["1000000001000000"].pack("b*") # => "\001\002"
ビットストリング(各バイトごとに上位ビットから下位ビット)
"\377\000".unpack("B*") # => ["1111111100000000"] "\001\002".unpack("B*") # => ["0000000100000010"] "\001\002".unpack("B9") # => ["000000010"] "\001\002".unpack("B15") # => ["000000010000001"] ["0000000100000010"].pack("B*") # => "\001\002" ["0000000100000010"].pack("B0") # => "" ["0000000100000010"].pack("B1") # => "\000" ["0000000100000010"].pack("B7") # => "\000" ["0000000100000010"].pack("B8") # => "\001" ["0000000100000010"].pack("B9") # => "\001\000" ["0000000100000010"].pack("B14") # => "\001\000" ["0000000100000010"].pack("B15") # => "\001\002" ["0000000100000010"].pack("B16") # => "\001\002"
16進文字列(下位ニブルが先)
"\x01\xfe".unpack("h*") # => ["10ef"] "\x01\xfe".unpack("h3") # => ["10e"] ["10ef"].pack("h*") # => "\001\376"
16進文字列(上位ニブルが先)
"\x01\xfe".unpack("H*") # => ["01fe"] "\x01\xfe".unpack("H3") # => ["01f"] "~".unpack("H2") # => ["7e"] ["01fe"].pack("H*") # => "\001\376" ["7e"].pack("H2") # => "~"
char (8bit 符号つき整数)
"\001\376".unpack("c*") # => [1, -2] [1, -2].pack("c*") # => "\001\376" [1, 254].pack("c*") # => "\001\376"
unsigned char (8bit 符号なし整数)
"\001\376".unpack("C*") # => [1, 254] [1, -2].pack("C*") # => "\001\376" [1, 254].pack("C*") # => "\001\376"
short (16bit 符号つき整数, エンディアンに依存) (s! は 16bit でなく、short のサイズに依存)
リトルエンディアン:
"\001\002\376\375".unpack("s*") # => [513, -514] [513, 65022].pack("s*") # => "\001\002\376\375" [513, -514].pack("s*") # => "\001\002\376\375"
ビッグエンディアン:
"\001\002\376\375".unpack("s*") # => [258, -259] [258, 65277].pack("s*") # => "\001\002\376\375" [258, -259].pack("s*") # => "\001\002\376\375"
unsigned short (16bit 符号なし整数, エンディアンに依存) (S! は 16bit でなく、short のサイズに依存)
リトルエンディアン:
"\001\002\376\375".unpack("S*") # => [513, 65022] [513, 65022].pack("s*") # => "\001\002\376\375" [513, -514].pack("s*") # => "\001\002\376\375"
ビッグエンディアン:
"\001\002\376\375".unpack("S*") # => [258, 65277] [258, 65277].pack("S*") # => "\001\002\376\375" [258, -259].pack("S*") # => "\001\002\376\375"
int (符号つき整数, エンディアンと int のサイズに依存)
リトルエンディアン, 32bit int:
"\001\002\003\004\377\376\375\374".unpack("i*") # => [67305985, -50462977] [67305985, 4244504319].pack("i*") # => RangeError [67305985, -50462977].pack("i*") # => "\001\002\003\004\377\376\375\374"
ビッグエンディアン, 32bit int:
"\001\002\003\004\377\376\375\374".unpack("i*") # => [16909060, -66052] [16909060, 4294901244].pack("i*") # => RangeError [16909060, -66052].pack("i*") # => "\001\002\003\004\377\376\375\374"
unsigned int (符号なし整数, エンディアンと int のサイズに依存)
リトルエンディアン, 32bit int:
"\001\002\003\004\377\376\375\374".unpack("I*") # => [67305985, 4244504319] [67305985, 4244504319].pack("I*") # => "\001\002\003\004\377\376\375\374" [67305985, -50462977].pack("I*") # => "\001\002\003\004\377\376\375\374"
ビッグエンディアン, 32bit int:
"\001\002\003\004\377\376\375\374".unpack("I*") # => [16909060, 4294901244] [16909060, 4294901244].pack("I*") # => "\001\002\003\004\377\376\375\374" [16909060, -66052].pack("I*") # => "\001\002\003\004\377\376\375\374"
long (32bit 符号つき整数, エンディアンに依存) (l! は 32bit でなく、long のサイズに依存)
リトルエンディアン, 32bit long:
"\001\002\003\004\377\376\375\374".unpack("l*") # => [67305985, -50462977] [67305985, 4244504319].pack("l*") # => RangeError [67305985, -50462977].pack("l*") # => "\001\002\003\004\377\376\375\374"
unsigned long (32bit 符号なし整数, エンディアンに依存) (L! は 32bit でなく、long のサイズに依存)
リトルエンディアン, 32bit long:
"\001\002\003\004\377\376\375\374".unpack("L*") # => [67305985, 4244504319] [67305985, 4244504319].pack("L*") # => "\001\002\003\004\377\376\375\374" [67305985, -50462977].pack("L*") # => "\001\002\003\004\377\376\375\374"
long long (符号付き整数, エンディアンと long long のサイズに依存) (C で long long が扱えない場合には 64bit)
リトルエンディアン, 64bit long long:
"\001\002\003\004\005\006\007\010\377\376\375\374\373\372\371\370".unpack("q*") # => [578437695752307201, -506097522914230529] [578437695752307201, -506097522914230529].pack("q*") # => "\001\002\003\004\005\006\a\010\377\376\375\374\373\372\371\370" [578437695752307201, 17940646550795321087].pack("q*") # => "\001\002\003\004\005\006\a\010\377\376\375\374\373\372\371\370"
unsigned long long (符号なし整数, エンディアンと long long のサイズに依存) (C で long long が扱えない場合には 64bit)
リトルエンディアン, 64bit long long:
"\001\002\003\004\005\006\007\010\377\376\375\374\373\372\371\370".unpack("Q*") # => [578437695752307201, 17940646550795321087] [578437695752307201, 17940646550795321087].pack("Q*") # => "\001\002\003\004\005\006\a\010\377\376\375\374\373\372\371\370" [578437695752307201, -506097522914230529].pack("Q*") # => "\001\002\003\004\005\006\a\010\377\376\375\374\373\372\371\370"
base64された文字列。60 オクテットごと(と最後)に改行コードが付加されます。
Base64は、3オクテット(8bits * 3 = 24bits)のバイナリコードをASCII文字の うちの65文字 ([A-Za-z0-9+/]の64文字とpaddingのための'=')だけを使用して 4オクテット(6bits * 4 = 24bits)の印字可能文字列に変換するエンコーディ ング法です。[RFC2045], [RFC4648] で定義されています。
[""].pack("m") # => "" ["\0"].pack("m") # => "AA==\n" ["\0\0"].pack("m") # => "AAA=\n" ["\0\0\0"].pack("m") # => "AAAA\n" ["\377"].pack("m") # => "/w==\n" ["\377\377"].pack("m") # => "//8=\n" ["\377\377\377"].pack("m") # => "////\n" ["abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"].pack("m") # => "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXpBQkNERUZHSElKS0xNTk9QUVJT\nVFVWV1hZWg==\n" ["abcdefghijklmnopqrstuvwxyz"].pack("m3") # => "YWJj\nZGVm\nZ2hp\namts\nbW5v\ncHFy\nc3R1\ndnd4\neXo=\n" "".unpack("m") # => [""] "AA==\n".unpack("m") # => ["\000"] "AA==".unpack("m") # => ["\000"] "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXpBQkNERUZHSElKS0xNTk9QUVJT\nVFVWV1hZWg==\n".unpack("m") # => ["abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"] "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXpBQkNERUZHSElKS0xNTk9QUVJTVFVWV1hZWg==\n".unpack("m") # => ["abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"]
m0 は [RFC4648] 対応
[""].pack("m0") # => "" ["\0"].pack("m0") # => "AA==" ["\0\0"].pack("m0") # => "AAA=" ["\0\0\0"].pack("m0") # => "AAAA" ["\377"].pack("m0") # => "/w==" ["\377\377"].pack("m0") # => "//8=" ["\377\377\377"].pack("m0") # => "////" ["abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"].pack("m0") # => "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXpBQkNERUZHSElKS0xNTk9QUVJTVFVWV1hZWg==" "".unpack("m0") # => [""] "AA==\n".unpack("m0") # => ArgumentError "AA==".unpack("m0") # => ["\x00"] "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXpBQkNERUZHSElKS0xNTk9QUVJTVFVWV1hZWg==".unpack("m0") # => ["abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"]
[SEE_ALSO] base64
quoted-printable encoding された文字列
["a b c\td \ne"].pack("M") # => "a b c\td =\n\ne=\n" "a b c\td =\n\ne=\n".unpack("M") # => ["a b c\td \ne"]
ネットワークバイトオーダー(ビッグエンディアン)のunsigned short (16bit 符号なし整数)
[0,1,-1,32767,-32768,65535].pack("n*") # => "\000\000\000\001\377\377\177\377\200\000\377\377" "\000\000\000\001\377\377\177\377\200\000\377\377".unpack("n*") # => [0, 1, 65535, 32767, 32768, 65535]
ネットワークバイトオーダー(ビッグエンディアン)のunsigned long (32bit 符号なし整数)
[0,1,-1].pack("N*") # => "\000\000\000\000\000\000\000\001\377\377\377\377" "\000\000\000\000\000\000\000\001\377\377\377\377".unpack("N*") # => [0, 1, 4294967295]
"VAX"バイトオーダー(リトルエンディアン)のunsigned short (16bit 符号なし整数)
[0,1,-1,32767,-32768,65535].pack("v*") # => "\000\000\001\000\377\377\377\177\000\200\377\377" "\000\000\001\000\377\377\377\177\000\200\377\377".unpack("v*") # => [0, 1, 65535, 32767, 32768, 65535]
"VAX"バイトオーダー(リトルエンディアン)のunsigned long (32bit 符号なし整数)
[0,1,-1].pack("V*") # => "\000\000\000\000\001\000\000\000\377\377\377\377" "\000\000\000\000\001\000\000\000\377\377\377\377".unpack("V*") # => [0, 1, 4294967295]
単精度浮動小数点数(機種依存)
IA-32 (x86) (IEEE754 単精度 リトルエンディアン):
[1.0].pack("f") # => "\000\000\200?" [0.0/0.0].pack("f") # => "\000\000\300\377" # NaN [1.0/0.0].pack("f") # => "\000\000\200\177" # +Inf [-1.0/0.0].pack("f") # => "\000\000\200\377" # -Inf
SPARC (IEEE754 単精度 ビッグエンディアン):
[1.0].pack("f") # => "?\200\000\000" [0.0/0.0].pack("f") # => "\177\377\377\377" # NaN [1.0/0.0].pack("f") # => "\177\200\000\000" # +Inf [-1.0/0.0].pack("f") # => "\377\200\000\000" # -Inf
VAX (NetBSD 3.0) (非IEEE754):
[1.0].pack("f") # => "\200@\000\000"
倍精度浮動小数点数(機種依存)
IA-32 (IEEE754 倍精度 リトルエンディアン):
[1.0].pack("d") # => "\000\000\000\000\000\000\360?" [0.0/0.0].pack("d") # => "\000\000\000\000\000\000\370\377" # NaN [1.0/0.0].pack("d") # => "\000\000\000\000\000\000\360\177" # +Inf [-1.0/0.0].pack("d") # => "\000\000\000\000\000\000\360\377" # -Inf
SPARC (IEEE754 倍精度 ビッグエンディアン):
[1.0].pack("d") # => "?\360\000\000\000\000\000\000" [0.0/0.0].pack("d") # => "\177\377\377\377\377\377\377\377" # NaN [1.0/0.0].pack("d") # => "\177\360\000\000\000\000\000\000" # +Inf [-1.0/0.0].pack("d") # => "\377\360\000\000\000\000\000\000" # -Inf
VAX (NetBSD 3.0) (非IEEE754):
[1.0].pack("d") # => "\200@\000\000\000\000\000\000"
リトルエンディアンの単精度浮動小数点数(機種依存)
IA-32 (IEEE754):
[1.0].pack("e") # => "\000\000\200?"
SPARC (IEEE754):
[1.0].pack("e") # => "\000\000\200?"
リトルエンディアンの倍精度浮動小数点数(機種依存)
IA-32 (IEEE754):
[1.0].pack("E") # => "\000\000\000\000\000\000\360?"
SPARC (IEEE754):
[1.0].pack("E") # => "\000\000\000\000\000\000\360?"
ビッグエンディアンの単精度浮動小数点数(機種依存)
IA-32 (IEEE754):
[1.0].pack("g") # => "?\200\000\000"
SPARC (IEEE754):
[1.0].pack("g") # => "?\200\000\000"
IEEE754準拠な環境の場合、以下のようにして符号、指数部、仮数部を取り出せます。
s = [v].pack("g").unpack("B*")[0][0,1] # 符号 e = [v].pack("g").unpack("B*")[0][1,8] # 指数部 f = [v].pack("g").unpack("B*")[0][9,23] # 仮数部
そして、s, e, f の意味は以下の通りです。
sgn = s == "0" ? +1.0 : -1.0 exp = Integer("0b" + e) fra = Integer("0b" + f) if exp == 0 if fra == 0 sgn * 0 # ±0 (positive/negative zero) else sgn * fra * 2**(-126-23) # 非正規化数 (denormalized number) end elsif exp == 255 if fra == 0 sgn * Inf # ±∞ (positive/negative infinity) else NaN # 非数 (not a number) end else fra += 1 << 23 # ゲタ sgn * fra * 2**(exp-127-23) # 正規化数 (normalized number) end
ビッグエンディアンの倍精度浮動小数点数(機種依存)
IA-32:
[1.0].pack("G") # => "?\360\000\000\000\000\000\000"
SPARC:
[1.0].pack("G") # => "?\360\000\000\000\000\000\000"
IEEE754準拠な環境の場合、以下のようにして符号、指数部、仮数部を取り出せます。
s = [v].pack("G").unpack("B*")[0][0,1] # 符号 e = [v].pack("G").unpack("B*")[0][1,11] # 指数部 f = [v].pack("G").unpack("B*")[0][12,52] # 仮数部
そして、s, e, f の意味は以下の通りです。
sgn = s == "0" ? +1.0 : -1.0 exp = Integer("0b" + e) fra = Integer("0b" + f) if exp == 0 if fra == 0 sgn * 0 # ±0 (positive/negative zero) else sgn * fra * 2**(-1022-52) # 非正規化数 (denormalized number) end elsif exp == 2047 if fra == 0 sgn * Inf # ±∞ (positive/negative infinity) else NaN # 非数 (not a number) end else fra += 1 << 52 # ゲタ sgn * fra * 2**(exp-1023-52) # 正規化数 (normalized number) end
ナル終端の文字列へのポインタ
[""].pack("p") # => "\310\037\034\010" ["a", "b", "c"].pack("p3") # => " =\030\010\340^\030\010\360^\030\010" [nil].pack("p") # => "\000\000\000\000"
構造体(固定長文字列)へのポインタ
[nil].pack("P") # => "\000\000\000\000" ["abc"].pack("P3") # => "x*\024\010" ["abc"].pack("P4") # => ArgumentError: too short buffer for P(3 for 4) [""].pack("P") # => ArgumentError: too short buffer for P(0 for 1)
uuencodeされた文字列
[""].pack("u") # => "" ["a"].pack("u") # => "!80``\n" ["abc"].pack("u") # => "#86)C\n" ["abcd"].pack("u") # => "$86)C9```\n" ["a"*45].pack("u") # => "M86%A86%A86%A86%A86%A86%A86%A86%A86%A86%A86%A86%A86%A86%A86%A\n" ["a"*46].pack("u") # => "M86%A86%A86%A86%A86%A86%A86%A86%A86%A86%A86%A86%A86%A86%A86%A\n!80``\n" ["abcdefghi"].pack("u6") # => "&86)C9&5F\n#9VAI\n"
UTF-8
[0].pack("U") # => "\000" [1].pack("U") # => "\001" [0x7f].pack("U") # => "\177" [0x80].pack("U") # => "\302\200" [0x7fffffff].pack("U") # => "\375\277\277\277\277\277" [0x80000000].pack("U") # => RangeError [0,256,65536].pack("U3") # => "\000\304\200\360\220\200\200" "\000\304\200\360\220\200\200".unpack("U3") # => [0, 256, 65536] "\000\304\200\360\220\200\200".unpack("U") # => [0] "\000\304\200\360\220\200\200".unpack("U*") # => [0, 256, 65536]
BER圧縮整数
1バイトあたり7ビットを使用して必要最小限のバイト数で任意サイズの 0以上の整数を表す数値表現。各バイトの最上位ビットはデータの最後 を除いて必ず1が立っている(つまり最上位ビットはどこまでデータがあ るかを示している)。
ISO/IEC 8825-1:1995 : Information technology−ASN.1 encoding rules : Specification of Basic Encoding Rules(BER) に定められる整数の符号化方法。
[0].pack("w") # => "\000" [1].pack("w") # => "\001" [127].pack("w") # => "\177" [128].pack("w") # => "\201\000" [0x3fff].pack("w") # => "\377\177" [0x4000].pack("w") # => "\201\200\000" [0x3fffffff].pack("w") # => "\203\377\377\377\177" [0x40000000].pack("w") # => "\204\200\200\200\000" [0xffffffff].pack("w") # => "\217\377\377\377\177" [0x100000000].pack("w") # => "\220\200\200\200\000" "\0".unpack("w") # => [0] "\0\201\0\1".unpack("w*") # => [0, 128, 1]
なお、BER圧縮整数でエンコードした結果は大小関係を保存しない。 たとえば、[0x3fff].pack("w") > [0x4000].pack("w") である。
ナルバイト/1バイト読み飛ばす
[?a, ?b].pack("CxC") # => "a\000b" [?a, ?b].pack("Cx3C") # => "a\000\000\000b" "a\000b".unpack("CxC") # => [97, 98] "a\377b".unpack("CxC") # => [97, 98] "a\377b".unpack("Cx3C") # => ArgumentError: x outside of string
1バイト後退
[?a, ?b, ?c].pack("CCXC") # => "ac" "abcdef".unpack("x*XC") # => [102]
絶対位置への移動
[?a, ?b].pack("C @3 C") # => "a\000\000b" "a\000\000b".unpack("C @3 C") # => [97, 98]
以下、pack/unpack の使用例の一部です。
pack を使用しなくても同じことができる場合はその例も載せています。 pack は暗号になりやすい面があることを考慮し、pack を使いたくない人 に別解を示すためです。
[82, 117, 98, 121].pack("cccc") # => "Ruby" [82, 117, 98, 121].pack("c4") # => "Ruby" [82, 117, 98, 121].pack("c*") # => "Ruby" s = "" [82, 117, 98, 121].each {|c| s << c} s # => "Ruby" [82, 117, 98, 121].collect {|c| sprintf "%c", c}.join # => "Ruby" [82, 117, 98, 121].inject("") {|s, c| s << c} # => "Ruby"
"Ruby".unpack('C*') # => [82, 117, 98, 121] a = [] "Ruby".each_byte {|c| a << c} a # => [82, 117, 98, 121]
[82, 117, 98, 121].pack("ccxxcc") # => "Ru\000\000by"
"Ru\0\0by".unpack('ccxxcc') # => [82, 117, 98, 121]
"61 62 63 64 65 66".delete(' ').to_a.pack('H*').unpack('C*') # => [97, 98, 99, 100, 101, 102] "61 62 63 64 65 66".split.collect {|c| c.hex} # => [97, 98, 99, 100, 101, 102]
[0b01010010, 0b01110101, 0b01100010, 0b01111001].pack("C4") # => "Ruby" ["01010010011101010110001001111001"].pack("B32") # 8 bits * 4 # => "Ruby" [0x52, 0x75, 0x62, 0x79].pack("C4") # => "Ruby" ["52756279"].pack("H8") # 2 nybbles * 4 # => "Ruby"
["RUBY", "u", "b", "y"].pack("a4") # => "RUBY" ["RUBY", "u", "b", "y"].pack("aaaa") # => "Ruby" ["RUBY", "u", "b", "y"].pack("a*aaa") # => "RUBYuby"
["Ruby"].pack("a8") # => "Ruby\000\000\000\000"
[1,2].pack("s2") # => "\000\001\000\002" # ビッグエンディアンのシステムでの出力 # => "\001\000\002\000" # リトルエンディアンのシステムでの出力 [1,2].pack("n2") # => "\000\001\000\002" # システムによらずビッグエンディアン [1,2].pack("v2") # => "\001\000\002\000" # システムによらずリトルエンディアン
s = "\xff\xff\xff\xfe" n = s.unpack("N")[0] if n[31] == 1 n = -((n ^ 0xffff_ffff) + 1) end n # => -2
s = "\xff\xff\xff\xfe" n = s.unpack("N").pack("l").unpack("l")[0] n # => -2
require 'socket' Socket.gethostbyname("localhost")[3].unpack("C4").join(".") # => "127.0.0.1" "127.0.0.1".split(".").collect {|c| c.to_i}.pack("C4") # => "\177\000\000\001"
require 'socket' [Socket::AF_INET, Socket.getservbyname('echo'), 127, 0, 0, 1].pack("s n C4 x8") # => "\002\000\000\a\177\000\000\001\000\000\000\000\000\000\000\000"
pack/unpack を使う代わりに Socket.pack_sockaddr_in, Socket.unpack_sockaddr_in メソッドがあります。
テンプレート文字 "p" や "P" は、C 言語レベルのインタフェースのた めにあります(例えば IO#ioctl)。
["foo"].pack("p") # => "8\266\021\010"
結果の文字列はゴミに見えますが、実際は文字列"foo\0"を指すアドレ ス(のバイナリ表現)です。以下のようにすれば見慣れた表記で見ること が出来ます
printf "%#010x\n", "8\266\021\010".unpack("L")[0] # => 0x0811b638
アドレスが指す先のオブジェクト(この例で "foo\0") は、pack の結 果が GC されるまではGCされないことが保証されています。
unpack("p"), unpack("P") は、pack の結果からしか unpack できません。
["foo"].pack("p").unpack("p") # => ["foo"] "8\266\021\010".unpack("p") # => -:1:in `unpack': no associated pointer (ArgumentError) # from -:1
"p" や "P" は、nil を特別に扱い NULL ポインタとして解釈します。(以下は、32bitマシンで一般的な結果)
[nil].pack("p") # => "\000\000\000\000" "\0\0\0\0".unpack("p") # => [nil]
例えば、
struct { int a; short b; long c; } v = {1,2,3};
を表す文字列は
v = [1,2,3].pack("i!s!l!")
です。(byte alignment の問題から実際は適当な padding が必要に なるかもしれません)
この構造体を指すアドレスは
[v].pack("P") # => "\300\265\021\010"
で得られます。
Little endian:
("Comments").unpack("U*").pack("v*") # => "C\000o\000m\000m\000e\000n\000t\000s\000"
Big endian:
("Comments").unpack("U*").pack("n*") # => "\000C\000o\000m\000m\000e\000n\000t\000s"
permutation(n = self.length) { |p| block } -> Array
permutation(n = self.length) -> Enumerator
サイズ n の順列をすべて生成し,それを引数としてブロックを実行します。
引数を省略した場合は配列の要素数と同じサイズの順列に対してブロックを実 行します。
得られる順列の順序は保証されません。ブロックなしで呼び出されると, 順列 を生成する Enumerator オブジェクトを返します。
例:
a = [1, 2, 3] a.permutation.to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] a.permutation(1).to_a #=> [[1],[2],[3]] a.permutation(2).to_a #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]] a.permutation(3).to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] a.permutation(0).to_a #=> [[]]: one permutation of length 0 a.permutation(4).to_a #=> [] : no permutations of length 4
[SEE_ALSO] Array#combination, Array#repeated_permutation
pop -> object | nil
pop(n) -> Array
自身の末尾から要素を取り除いてそれを返します。 引数を指定した場合はその個数だけ取り除き、それを配列で返します。
空配列の場合、n が指定されていない場合は nil を、 指定されている場合は空配列を返します。 また、n が自身の要素数より少ない場合はその要素数の配列を 返します。どちらの場合も自身は空配列となります。
返す値と副作用の両方を利用して、個数を指定して配列を 2 分する簡単な方法として使えます。
例:
array = [1, [2, 3], 4] p array.pop # => 4 p array.pop # => [2, 3] p array # => [1] p array.pop # => 1 p array.pop # => nil p array # => [] array = [1, 2, 3] p array.pop(2) #=> [2, 3] p array #=> [1]
[SEE_ALSO] Array#push, Array#shift, Array#unshift
product(*lists) -> Array
product(*lists) { |e| ... } -> self
レシーバの配列と引数で与えられた配列(複数可)のそれぞれから要素を1 個ずつとって配列とし,それらのすべての配列を要素とする配列を返します。
返される配列の長さは,レシーバと引数で与えられた配列の長さのすべての積にな ります。
例:
[1,2,3].product([4,5]) # => [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]] [1,2].product([1,2]) # => [[1,1],[1,2],[2,1],[2,2]] [1,2].product([3,4],[5,6]) # => [[1,3,5],[1,3,6],[1,4,5],[1,4,6], # [2,3,5],[2,3,6],[2,4,5],[2,4,6]] [1,2].product() # => [[1],[2]] [1,2].product([]) # => []
ブロックが与えられた場合、作成した配列の各要素を引数としてブロックを実 行して self を返します。
a = [] [1,2,3].product([4,5]) {|e| a << e} # => [1,2,3] a # => [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]]
push(*obj) -> self
指定された obj を順番に配列の末尾に追加します。 引数を指定しなければ何もしません。
array = [1, 2, 3] array.push 4 array.push [5, 6] array.push 7, 8 p array # => [1, 2, 3, 4, [5, 6], 7, 8]
[SEE_ALSO] Array#pop, Array#shift, Array#unshift, Array#<<
rassoc(obj) -> Array | nil
自身が配列の配列であると仮定して、要素の配列でインデックス 1 の要素が obj に等しいものを検索し見つかった最初の要素を返 します。該当する要素がなければ nil を返します。
比較は == 演算子を使って行われます。
a = [[15,1], [25,2], [35,3]] p a.rassoc(2) # => [25, 2]
[SEE_ALSO] Array#assoc
repeated_combination(n) { |c| ... } -> Array
repeated_combination(n) -> Enumerator
サイズ n の重複組み合わせをすべて生成し、それを引数としてブロックを実行 します。
得られる組み合わせの順序は保証されません。ブロックなしで呼び出されると、 組み合わせを生成する Enumerator オブジェクトを返します。
例:
a = [1, 2, 3] a.repeated_combination(1).to_a #=> [[1], [2], [3]] a.repeated_combination(2).to_a #=> [[1,1],[1,2],[1,3],[2,2],[2,3],[3,3]] a.repeated_combination(3).to_a #=> [[1,1,1],[1,1,2],[1,1,3],[1,2,2],[1,2,3], # [1,3,3],[2,2,2],[2,2,3],[2,3,3],[3,3,3]] a.repeated_combination(4).to_a #=> [[1,1,1,1],[1,1,1,2],[1,1,1,3],[1,1,2,2],[1,1,2,3], # [1,1,3,3],[1,2,2,2],[1,2,2,3],[1,2,3,3],[1,3,3,3], # [2,2,2,2],[2,2,2,3],[2,2,3,3],[2,3,3,3],[3,3,3,3]] a.repeated_combination(0).to_a #=> [[]] # one combination of length 0
[SEE_ALSO] Array#repeated_permutation, Array#combination
repeated_permutation(n) { |p| ... } -> Array
repeated_permutation(n) -> Enumerator
サイズ n の重複順列をすべて生成し,それを引数としてブロックを実行します。
得られる順列の順序は保証されません。ブロックなしで呼び出されると, 順列 を生成する Enumerator オブジェクトを返します。
例:
a = [1, 2] a.repeated_permutation(1).to_a #=> [[1], [2]] a.repeated_permutation(2).to_a #=> [[1,1],[1,2],[2,1],[2,2]] a.repeated_permutation(3).to_a #=> [[1,1,1],[1,1,2],[1,2,1],[1,2,2], # [2,1,1],[2,1,2],[2,2,1],[2,2,2]] a.repeated_permutation(0).to_a #=> [[]] # one permutation of length 0
[SEE_ALSO] Array#repeated_combination, Array#permutation
replace(another) -> self
配列の内容を配列 another の内容で置き換えます。
a = [1, 2, 3] a.replace [4, 5, 6] p a #=> [4, 5, 6]
reverse -> Array
reverse! -> self
reverse は自身の要素を逆順に並べた新しい配列を生成して返します。 reverse! は自身を破壊的に並べ替えます。 reverse! は self を返します。
a = ["a", 2, true] p a.reverse #=> [true, 2, "a"] p a #=> ["a", 2, true] (変化なし) a = ["a", 2, true] p a.reverse! #=> [true, 2, "a"] p a #=> [true, 2, "a"]
reverse_each {|item| ... } -> self
reverse_each -> Enumerator
各要素に対して逆順にブロックを評価します。
ブロックが与えられなかった場合は、自身と reverse_each から生成した Enumerator オブジェクトを返します。
rindex(val) -> Integer | nil
rindex {|item| ... } -> Integer | nil
rindex -> Enumerator
指定された val と == で等しい最後の要素の位置を返します。 等しい要素がひとつもなかった時には nil を返します。
ブロックが与えられた時には、各要素を引数として順にブロックを実行し、 ブロックが真を返した最初の要素の位置を返します。
引数、ブロックのどちらも与えられなかった時には、自身と rindex から生成した Enumerator オブジェクトを返します。
p [1, 0, 0, 1, 0].rindex(1) #=> 3 p [1, 0, 0, 0, 0].rindex(1) #=> 0 p [0, 0, 0, 0, 0].rindex(1) #=> nil p [0, 1, 0, 1, 0].rindex {|v| v > 0} #=> 3
[SEE_ALSO] Array#index
rotate(cnt = 1) -> Array
cnt で指定したインデックスの要素が先頭になる配列を新しく作成します。 cnt より前の要素は末尾に移動します。cnt に負の数を指定した場合、逆の操 作を行います。
例:
a = [ "a", "b", "c", "d" ] a.rotate # => ["b", "c", "d", "a"] a # => ["a", "b", "c", "d"] a.rotate(2) # => ["c", "d", "a", "b"] a.rotate(-1) # => ["d", "a", "b", "c"] a.rotate(-3) # => ["b", "c", "d", "a"]
[SEE_ALSO] Array#rotate!
rotate!(cnt = 1) -> self
cnt で指定したインデックスの要素が先頭になるように自身の順番を変更しま す。cnt より前の要素は末尾に移動します。cnt に負の数を指定した場合、逆 の操作を行います。
例:
a = [ "a", "b", "c", "d" ] a.rotate! #=> ["b", "c", "d", "a"] a #=> ["b", "c", "d", "a"] a.rotate!(2) #=> ["d", "a", "b", "c"] a.rotate!(-3) #=> ["a", "b", "c", "d"]
[SEE_ALSO] Array#rotate
sample -> object | nil
sample(n) -> Array
sample(random: rng) -> object | nil
sample(n, random: rng) -> Array
配列の要素を1個(引数を指定した場合は自身の要素数を越えない範囲で n 個) ランダムに選んで返します。
重複したインデックスは選択されません。そのため、自身がユニークな配列の 場合は返り値もユニークな配列になります。
配列が空の場合、無引数の場合は nil を、個数を指定した場合は空配列を返します。
srand()が有効です。
例:
a = (1..10).to_a p a.sample #=> 9 p a.sample #=> 10 p a.sample(3) #=> [1, 9, 3] p a #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
select! {|item| block } -> self | nil
select! -> Enumerator
ブロックが false を返した要素を自身から削除します。 変更があった場合は self を、 変更がなかった場合には nil を返します。
a = %w{ a b c d e f } a.select! {|v| v =~ /[a-z]/ } # => nil a # => ["a", "b", "c", "d", "e", "f"]
ブロックが与えられなかった場合は、自身と select! から生成した Enumerator オブジェクトを返します。
[SEE_ALSO] Array#keep_if
shift -> object | nil
shift(n) -> Array
配列の先頭の要素を取り除いてそれを返します。 引数を指定した場合はその個数だけ取り除き、それを配列で返します。
空配列の場合、n が指定されていない場合は nil を、 指定されている場合は空配列を返します。 また、n が自身の要素数より少ない場合はその要素数の配列を 返します。どちらの場合も自身は空配列となります。
返す値と副作用の両方を利用して、個数を指定して配列を 2 分する簡単な方法として使えます。
例:
a = [0, 1, 2, 3, 4] p a.shift #=> 0 p a #=> [1, 2, 3, 4] p [].shift #=> nil p [].shift(1) #=> []
[SEE_ALSO] Array#push, Array#pop, Array#unshift
shuffle -> Array
shuffle(random: rng) -> Array
配列の要素をランダムシャッフルして,その結果を配列として返します。
引数に Random オブジェクトを渡すことでそのオブジェクトが 生成する疑似乱数列を用いることができます。
例:
a = [ 1, 2, 3 ] #=> [1, 2, 3] a.shuffle #=> [2, 3, 1] rng = Random.new rng2 = rng.dup # RNGを複製 # 以下の2つは同じ結果を返す [1,2,3].shuffle(random: rng) [1,2,3].shuffle(random: rng2)
[SEE_ALSO] Array#shuffle!
shuffle! -> self
shuffle!(random: rng) -> self
配列を破壊的にランダムシャッフルします。
例:
a = [ 1, 2, 3 ] #=> [1, 2, 3] a.shuffle! #=> [2, 3, 1] a #=> [2, 3, 1]
[SEE_ALSO] Array#shuffle
slice(nth) -> object | nil
指定された自身の要素を返します。Array#[] と同じです。
例:
p [0, 1, 2].slice(1) #=> 1 p [0, 1, 2].slice(2) #=> 2 p [0, 1, 2].slice(10) #=> nil
slice(pos, len) -> Array | nil
slice(range) -> Array | nil
指定された自身の部分配列を返します。Array#[] と同じです。
例:
p [0, 1, 2].slice(0, 2) #=> [0, 1] p [0, 1, 2].slice(2..3) #=> [2] p [0, 1, 2].slice(10, 1) #=> nil
slice!(nth) -> object | nil
指定した要素を自身から取り除き、取り除いた要素を返します。取り除く要素がなければ nil を返します。
例:
a = [ "a", "b", "c" ] a.slice!(1) #=> "b" a #=> ["a", "c"] a.slice!(-1) #=> "c" a #=> ["a"] a.slice!(100) #=> nil a #=> ["a"]
slice!(start, len) -> Array | nil
slice!(range) -> Array | nil
指定した部分配列を自身から取り除き、取り除いた部分配列を返します。取り除く要素がなければ nil を返します。
以下のコードと同値です。
def slice!(*args) result = self[*args] self[*args] = nil result end
ですので以下のように配列の長さが拡張される場合もありえます。
a = [ "a", "b", "c" ] p a.slice!(5, 1) #=> nil p a #=> ["a", "b", "c", nil, nil]
例:
a = [ "a", "b", "c" ] a.slice!(1, 2) #=> ["b", "c"] a #=> ["a"] a = [ "a", "b", "c" ] a.slice!(1, 0) #=> [] a #=> [ "a", "b", "c" ] a = [ "a", "b", "c" ] a.slice!(-10, 1) #=> IndexError
sort -> Array
sort! -> self
sort {|a, b| ... } -> Array
sort! {|a, b| ... } -> self
配列の内容をソートします。要素同士の比較は <=> 演算子を使って行います。sort はソートされた配列を生成して返します。 sort! は self を破壊的にソートし、self を返します。
ブロックとともに呼び出された時には、要素同士の比較をブロックを用いて行います。 ブロックに2つの要素を引数として与えて評価し、その結果で比較します。 ブロックは <=> 演算子と同様に整数を返すことが期待されています。つまり、 ブロックは第1引数が大きいなら正の整数、両者が等しいなら0、そして第1引数の方が小さいなら 負の整数を返さなければいけません。両者を比較できない時は nil を返します。
a = [ "d", "a", "e", "c", "b" ] p a.sort #=> ["a", "b", "c", "d", "e"] b = ["9", "7", "10", "11", "8"] p b.sort #=> ["10", "11", "7", "8", "9"] (文字列としてソートするとこうなる) p b.sort{|x, y| x.to_i <=> y.to_i } #=> ["7", "8", "9", "10", "11"] (ブロックを使って数字としてソート) # sort_by を使っても良い p b.sort_by{|x| x.to_i } #=> ["7", "8", "9", "10", "11"]
[SEE_ALSO] Enumerable#sort_by , Array#sort_by!
sort_by! -> Enumerator
sort_by! {|item| ... } -> self
sort_by の破壊的バージョンです。
ブロックを省略した場合は返り値によって配列を破壊的に ソートする Enumerator を返します。
[SEE_ALSO] Enumerable#sort_by
to_a -> Array
self を返します。ただし、Array のサブクラスのインスタンスに対して呼ばれた時は、 自身を Array に変換したものを返します。
to_ary -> self
self をそのまま返します。
transpose -> Array
自身を行列と見立てて、行列の転置(行と列の入れ換え)を行いま す。転置した配列を生成して返します。空の配列に対しては空の配列を生 成して返します。
それ以外の一次元の配列に対しては、例外 TypeError が発生します。各要素のサイズが不揃いな配列に対して は、例外 IndexError が発生します。
p [[1,2], [3,4], [5,6]].transpose # => [[1, 3, 5], [2, 4, 6]] p [].transpose # => [] p [1,2,3].transpose # => -:1:in `transpose': cannot convert Fixnum into Array (TypeError) from -:1 p [[1,2], [3,4,5], [6,7]].transpose # => -:3:in `transpose': element size differ (3 should be 2) (IndexError)
uniq -> Array
uniq! -> self | nil
uniq {|item| ... } -> Array
uniq! {|item| ... } -> self | nil
uniq は配列から重複した要素を取り除いた新しい配列を返します。 uniq! は削除を破壊的に行い、削除が行われた場合は self を、 そうでなければnil を返します。
取り除かれた要素の部分は前に詰められます。 要素の重複判定は、Object#eql? により行われます。
p [1, 1, 1].uniq # => [1] p [1, 4, 1].uniq # => [1, 4] p [1, 3, 2, 2, 3].uniq # => [1, 3, 2]
ブロックが与えられた場合、ブロックが返した値が重複した要素を取り除いた 配列を返します。
p [1, 3, 2, "2", "3"].uniq # => [1, 3, 2, "2", "3"] p [1, 3, 2, "2", "3"].uniq { |n| n.to_s } # => [1, 3, 2]
unshift(*obj) -> self
指定された obj を引数の最後から順番に配列の先頭に挿入します。 引数を指定しなければ何もしません。
arr = [1,2,3] arr.unshift 0 p arr #=> [0, 1, 2, 3] arr.unshift [0] p arr #=> [[0], 0, 1, 2, 3] arr.unshift 1, 2 p arr #=> [1, 2, [0], 0, 1, 2, 3]
[SEE_ALSO] Array#push, Array#pop, Array#shift
values_at(*selectors) -> Array
引数で指定されたインデックスに対応する要素を配列で返します。インデッ クスに対応する値がなければ nil が要素になります。
ary = %w( a b c d e ) p ary.values_at( 0, 2, 4 ) #=> ["a", "c", "e"] p ary.values_at( 3, 4, 5, 6, 35 ) #=> ["d", "e", nil, nil, nil] p ary.values_at( 0, -1, -2 ) #=> ["a", "e", "d"] p ary.values_at( -4, -5, -6, -35 ) #=> ["b", "a", nil, nil] p ary.values_at( 1..2 ) #=> ["b", "c"] p ary.values_at( 3..10 ) #=> ["d", "e", nil, nil, nil, nil, nil, nil] p ary.values_at( 6..7 ) #=> [nil, nil] p ary.values_at( 0, 3..5 ) #=> ["a", "d", "e", nil]
zip(*lists) -> [[object]]
zip(*lists) {|v1, v2, ...| ...} -> nil
自身と引数に渡した配列の各要素からなる配列の配列を生成して返します。 生成される配列の要素数は self の要素数と同じです。
ブロック付きで呼び出した場合は、 self と引数に渡した配列の各要素を順番にブロックに渡します。
例:
p [1,2,3].zip([4,5,6], [7,8,9]) # => [[1, 4, 7], [2, 5, 8], [3, 6, 9]] p [1,2].zip([:a,:b,:c], [:A,:B,:C,:D]) # => [[1, :a, :A], [2, :b, :B]] p [1,2,3,4,5].zip([:a,:b,:c], [:A,:B,:C,:D]) # => [[1, :a, :A], [2, :b, :B], # [3, :c, :C], [4, nil, :D], [5, nil, nil]] p [1,2,3].zip([4,5,6], [7,8,9]) {|ary| p ary } # => [1, 4, 7] # [2, 5, 8] # [3, 6, 9] # nil
self | other -> Array
集合の和演算です。両方の配列にいずれかに含まれる要素を全て含む新し い配列を返します。重複する要素は取り除かれます。
要素の重複判定は、Object#eql? により行われます。
[1, 1, 4, 2, 3] | [4, 5, 5] #=> [1, 4, 2, 3, 5]
[SEE_ALSO] Array#&